This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Isopolar vs Isosteric Phosphonate Analogues of Nucleotides

G. Michael Blackburn^a; Fritz Eckstein^b; David E. Kent^a; Timothy D. Perrée^a

 $^{\rm a}$ Department of Chemistry, The University, Sheffield, U.K. $^{\rm b}$ Max-Planck-Institut für Experimentelle Medizin, Göttingen

To cite this Article Blackburn, G. Michael , Eckstein, Fritz , Kent, David E. and Perrée, Timothy D. (1985) 'Isopolar vs Isosteric Phosphonate Analogues of Nucleotides', Nucleosides, Nucleotides and Nucleic Acids, 4:1,165-167

To link to this Article: DOI: 10.1080/07328318508077845 URL: http://dx.doi.org/10.1080/07328318508077845

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ISOPOLAR vs ISOSTERIC PHOSPHONATE ANALOGUES OF NUCLEOTIDES

G.Michael Blackburn, Fritz Eckstein, David E.Kent, and Timothy D.Perrée

(Department of Chemistry, The University, Sheffield S3 7HF, U.K., and Max-Planck-Institut für Experimentelle Medizin, Abt.Chemie, Göttingen)

Summary A range of β, γ -bridged phosphonate analogues of ATP and of β, β' -bridged analogues of Ap_LA has been synthesised. Some of their metal binding characteristics and inhibition of enzymatic phosphoryl transfer processes can be described in terms of the relative importance of steric and electronic features of the nucleotide analogues.

The use of phosphonate analogues of biological phosphate monoesters has been governed primarily by the general stability of the P-C bond and by the adequate stereochemical correspondence between a divalent CH₂ group in the phosphonate and the ester oxygen of the parent phosphate. The resulting emphasis on the *isosteric* character of the analogue has barely been justified by quantitative evaluations of their biological activity. For example, haemoglobin binds D-2,3-bisphosphoglyceric acid (I) ten times better than either D- or L- isomers of the analogue 2-carboxybutane-1,4-bisphosphonate (2). We have therefore argued that isostericity may be less important than *isopolar* character and, to that end, have devised a variety of routes for the preparation of α -fluorophosphonic acids as analogues of phosphate monoesters. 3,4

The ready availability of halo- and dihalo-methylenebisphosphonic acids (3) has enabled us to prepare β,γ -bridged analogues of ATP (4a) and GTP using the Moffatt-Khorana phosphomorpholidate coupling route. We have also prepared the α,β -bridged ADP analogues by DCCD condensation of (3) with isopropylidene adenosine. The physical properties of these *isosteric* ATP analogues (4b-e) show an increasing correspondence to those of ATP (4a) in the sequence $CH_2 < CHF \cong CC1_2 < CF_2 \cong NH < O$ for the

BLACKBURN ET AL.

 β,γ -bridged function and they bind calcium and magnesium ions as expected. These compounds thus describe a series of increasing isoelectronic relationship to ATP.

The condensation of acetylenebisphosphonic acid and of \mathbb{Z} -ethylene-1,2-bisphosphonic acid with adenosine 5'-monophosphomorpholidate gives analogues of ATP (4f,g) which are not isosteric although their ^{31}P NMR spectra and general ionisation behaviour suggests that they are good isopolar analogues of ATP. An additional example of a more flexible, isoelectronic but non-isosteric ATP analogue has been provided by Leonard through the incorporation of the labile peroxide linkage into the β,γ -bridge (4h).

These ATP analogues are substrates for adenylate enzymes such as adenylate cyclase and RNA polymerase. The latter shows a preference for size factors over electronegativity. The analogues are inhibitors of kinases, where hexokinase shows a preference for isopolarity.

When the condensation reaction for the synthesis of (4b-g) is carried out with an excess of adenosine 5'-monophosphomorpholidate, the major products are the β,β' -bridged phosphonate analogues of Ap_4A (5a). The centrosymmetric character of these compounds (5b-ff) is readily seen in their ^{31}P NMR spectra. This property makes them ideal bisubstrate analogues to probe the nucleotide binding site of myokinase (EC 2.7.4.3). In the longer term, however, these analogues may be expected to show more potential for investigation of the range of cellular control functions regulated by Ap_4A , such as DNA synthesis and cell proliferation. 9

(5) a, X=0; b, $X=CH_2$; c, $X=CCI_2$; d, $X=CF_2$; e, $X=C\Xi G$; f, $X=CH_{\overline{L}}CH$.

REFERENCES

- 1 Engel, R; Chem. Revs., 1977, 77, 355
- 2 Blackburn, G.M; Chem. Ind (London), 1981, 134
- 3 Blackburn, G.M.; Kent, D.E.; J. Chem. Soc. Chem. Commun., 1981,511
- 4 Blackburn, G.M.; Parratt, M.J.; J. Chem. Soc. Chem. Commun., 1982, 1270; 1983, 886
- 5 Moffatt, J.G.; Khorana, H.G.; J. Amer. Chem. Soc., 1961, 83, 649
- 6 Myers, T.C.; Nakamura, K.; Danielzachel, A.B.; J. Org. Chem., 1965, 30, 1517
- 7 Rosendahl, M.S.; Leonard, N.J.; Science, 1982, 215, 81
- 8 Garrison, P.N.; Barnes, L.D.; *Biochem. J.*, 1984, 217, 805
- 9 Grummt, F.; Plant Mol. Biol. 1983, 2, 41

Acknowledgements. We thank the Nuffield Foundation and the SERC for financial support.